42 research outputs found

    A hierarchical, fuzzy inference approach to data filtration and feature prioritization in the connected manufacturing enterprise

    Get PDF
    In manufacturing, the technology to capture and store large volumes of data developed earlier and faster than corresponding capabilities to analyze, interpret, and apply it. The result for many manufacturers is a collection of unanalyzed data and uncertainty with respect to where to begin. This paper examines big data as both an enabler and a challenge for the connected manufacturing enterprise and presents a framework that sequentially tests and selects independent variables for training applied machine learning models. Unsuitable features are discarded, and each remaining feature receives a crisp numeric output and a linguistic label, both of which are measures of the feature’s suitability. The framework is tested using three datasets employing time series, binary, and continuous input data. Results of filtered models are compared to results obtained by base, unfiltered sets of features using a proposed metric of performance-size ratio. Framework results outperform base feature sets in all tested cases, and the proposed future research will be to implement it in a case study in the electronic assembly manufacture

    Genetic Variation in the TP53 Pathway and Bladder Cancer Risk. A Comprehensive Analysis

    Get PDF
    Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk. Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously. Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation. Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.This work was supported by the Fondo de Investigacion Sanitaria, Spain (grant numbers 00/0745, PI051436, PI061614, G03/174); Red Tematica de Investigacion Cooperativa en Cancer (grant number RD06/0020-RTICC), Spain; Marato TV3 (grant number 050830); European Commission (grant numbers EU-FP7-HEALTH-F2-2008-201663-UROMOL; US National Institutes of Health (grant number USA-NIH-RO1-CA089715); and the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, USA; Consolider ONCOBIO (Ministerio de Economia y Competitividad, Madrid, Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Religious transformations in the Middle Ages: towards a new archaeological agenda

    Get PDF
    The study of religious change in Europe between the collapse of the Roman Empire and the Reformation forms one of the cornerstones of medieval archaeology but has been riven by period, denominational and geographical divisions. This paper lays the groundwork for a fundamental rethink of archaeological approaches to medieval religions, by adopting a holistic framework that places Christian, pagan, Islamic and Jewish case studies of religious transformation in a long-term, comparative perspective. Focused around the analytical themes of ‘hybridity and resilience’ and ‘tempo and trajectories’, our approach shifts attention away from the singularities of national narratives of religious conversion towards a deeper understanding of how religious beliefs, practices and identity were renegotiated by medieval people in their daily lives

    A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer

    Get PDF
    Funder: Fundación Científica Asociación Española Contra el Cáncer (ES)Funder: Cancer Focus Northern Ireland and Department for Employment and LearningFunder: Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USAAbstract: Background: Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. Methods: We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. Results: We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E−06 in 1D approach and a Local Moran’s Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8—a lncRNA associated with pancreatic carcinogenesis—with a lowest p value = 6.91E−05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1—a major regulator of the ER stress and unfolded protein responses in acinar cells—identified by 3D; all of them with a strong in silico functional support. Conclusions: This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore